Ca2+-dependent binding of calcium-binding protein 1 to presynaptic group III metabotropic glutamate receptors and blockage by phosphorylation of the receptors.

نویسنده

  • Yoshiaki Nakajima
چکیده

Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-dependent binding of calcium-binding protein 1 to presynaptic group III metabotropic glutamate receptors and blockage by phosphorylation of the receptors

Ca(2+)-dependent binding of calcium-binding protein 1 to presynaptic group III metabotropic glutamate receptors and blockage by phosphorylation of the receptors. Author(s) Nakajima, Yoshiaki Citation Biochemical and biophysical research communications (2011), 412(4): 602-605 Issue Date 2011-09-09 URL http://hdl.handle.net/2433/147235 Right © 2011 Elsevier Inc. Type Journal Article Textversion a...

متن کامل

Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders

Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors.

Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupl...

متن کامل

Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission.

Presynaptic inhibition is one of the major control mechanisms in the CNS. Previously we reported that adenosine A1 receptors mediate presynaptic inhibition at the retinotectal synapse of goldfish. Here we extend these findings to metabotropic glutamate receptors (mGluRs) and report that presynaptic inhibition produced by both A1 adenosine receptors and group II mGluRs is due to G(i) protein cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 412 4  شماره 

صفحات  -

تاریخ انتشار 2011